Function of oxygen resistance proteins in the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris hildenborough.
نویسندگان
چکیده
Two mutant strains of Desulfovibrio vulgaris Hildenborough lacking either the sod gene for periplasmic superoxide dismutase or the rbr gene for rubrerythrin, a cytoplasmic hydrogen peroxide (H(2)O(2)) reductase, were constructed. Their resistance to oxidative stress was compared to that of the wild-type and of a sor mutant lacking the gene for the cytoplasmic superoxide reductase. The sor mutant was more sensitive to exposure to air or to internally or externally generated superoxide than was the sod mutant, which was in turn more sensitive than the wild-type strain. No obvious oxidative stress phenotype was found for the rbr mutant, indicating that H(2)O(2) resistance may also be conferred by two other rbr genes in the D. vulgaris genome. Inhibition of Sod activity by azide and H(2)O(2), but not by cyanide, indicated it to be an iron-containing Sod. The positions of Fe-Sod and Sor were mapped by two-dimensional gel electrophoresis (2DE). A strong decrease of Sor in continuously aerated cells, indicated by 2DE, may be a critical factor in causing cell death of D. vulgaris. Thus, Sor plays a key role in oxygen defense of D. vulgaris under fully aerobic conditions, when superoxide is generated mostly in the cytoplasm. Fe-Sod may be more important under microaerophilic conditions, when the periplasm contains oxygen-sensitive, superoxide-producing targets.
منابع مشابه
Deletion of the rbo gene increases the oxygen sensitivity of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough.
The rbo gene of Desulfovibrio vulgaris Hildenborough encodes rubredoxin oxidoreductase (Rbo), a 14-kDa iron sulfur protein; forms an operon with the gene for rubredoxin; and is preceded by the gene for the oxygen-sensing protein DcrA. We have deleted the rbo gene from D. vulgaris with the sacB mutagenesis procedure developed previously (R. Fu and G. Voordouw, Microbiology 143:1815-1826, 1997). ...
متن کاملOxygen-dependent growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough.
Desulfovibrio vulgaris Hildenborough, a sulfate-reducing bacterium classified as an obligate anaerobe, swam to a preferred oxygen concentration of 0.02 to 0.04% (0.24 to 0.48 microM), a level which also supported growth. Oxygen concentrations of 0.08% and higher arrested growth. We propose that in zones of transition from an oxic to an anoxic environment, D. vulgaris protects anoxic microenviro...
متن کاملTargeted gene-replacement mutagenesis of dcrA, encoding an oxygen sensor of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough.
A gene-replacement mutagenesis method has been developed for the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough and used to delete dcrA, encoding a potential oxygen or redox sensor with homology to the methyl-accepting chemotaxis proteins. A suicide plasmid, containing a cat-marked dcrA allele and a counter-selectable sacB marker was transferred from Escherichia coli...
متن کاملGrowth of the Obligate Anaerobe Desulfovibrio vulgaris Hildenborough under Continuous Low Oxygen Concentration Sparging: Impact of the Membrane-Bound Oxygen Reductases
Although obligate anaerobe, the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH) exhibits high aerotolerance that involves several enzymatic systems, including two membrane-bound oxygen reductases, a bd-quinol oxidase and a cc(b/o)o3 cytochrome oxidase. Effect of constant low oxygen concentration on growth and morphology of the wild-type, single (Δbd, Δcox) and double delet...
متن کاملCell-wide responses to low-oxygen exposure in Desulfovibrio vulgaris Hildenborough.
The responses of the anaerobic, sulfate-reducing organism Desulfovibrio vulgaris Hildenborough to low-oxygen exposure (0.1% O(2)) were monitored via transcriptomics and proteomics. Exposure to 0.1% O(2) caused a decrease in the growth rate without affecting viability. Concerted upregulation of the predicted peroxide stress response regulon (PerR) genes was observed in response to the 0.1% O(2) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 185 1 شماره
صفحات -
تاریخ انتشار 2003